ABSTRACTS

ESTIMATING THE COEFFICIENT OF THERMAL
CONDUCTIVITY OF ORDERED TWO-PHASE SYSTEMS

S. V. Stepanov UDC 536.21

Analysis of the relationships obtained in [1] for estimating the coefficient of thermal conductivity of
two-phase systems shows that for isotropic systems they correspond with the known evaluations
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Different results from these are obtained for media which are statistically anisotropic. Hence the follow-
ing relationships will be correct for fully ordered structures:
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It is possible to show that the relationships (2) and (3) will give solutions which correspond with the
solutions obtained by approximate methods of "linear isotherms™ and of "linear thermal flow.” From the
physical point of view this is explained as follows. In the method of "linear isotherms" the actual temper-
ature field in the system is replaced by a field in which the isotherms represent the combination of planes
which are perpendicular to the macroscopic temperature gradient. Such a replacement is equivalent to the
introduction of a number of infinitely thin superconducting planes into the system, which can only lead to
an increase of the thermal conductivity.

In the method of "linear thermal flow" the thermal
flow lines are replaced by parallel straight lines. This
corresponds with the introduction of a combination of tubes
with heat-impervious walls of infinitely small thickness into
the systems, which can only reduce A.
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Figure 1 gives the results of calculation of the thermal
conductivity coefficient according to formulas (2) and (3) for
the structures: cubes in a cubic pattern, spheres in a cubic
pattern, a structure with mutually penetrating phases
(Dul'nev— Frey model [2,3]). Comparison of these with the

0 04 a8 P solutions obtained by the methods of "linear isotherms™"
Fig. 1. Evaluation of the coefficient of and "linear thermal flow" [2-6] shows complete agreement
thermal conductivity of ordered two-phase of the results.
systems (\@)/A @) < ¢) from above and be-
low: continuous lines — cubes in a cubic NOTATION
pattern; dash lines — spheres in a cubic AQ), 2 @)

are the coefficients of thermal conductivity of the
first and second phases; :
Frey model. P is the volume concentration of the second phase;

pattern; dot-and-dash line — Dul'nev—
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L, S are the lengthandarea of the foundation of a straight parallelepiped, selected as an ele-
ment (the parallelepiped is orientated in the direction of the macroscopic temperature

gradient);
L, is the length of the projection of the second phase on the edge of the parallelepiped;
8, is the area of the projection of the second phase on the foundation of the parallelepiped;
1,x,y), 8 (2) are the length and area of the perpendicular cross-section of the parallelepiped, com-

ing into the second phase.
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NONSTATIONARY TEMPERATURE DISTRIBUTION IN
A HOLLOW CYLINDER

A. I. Logvinenko and V. N. Serebryanskii UDC 536.21

A relation is presented for calculating the nonstationary temperature distribution in an infinite hol-
low cylinder heated from the inside and cooled from the outside. To simplify engineering calculations we
have obtained the values of the first three roots of the characteristic equation for the following ranges of

parameters:
Bij = 0.1 —40; Bi,=0.1—5.0; M =0.4-0.9.

Here Bi; characterizes the rate of heating the wall, and Bi, the rate of cooling; M is the ratio of the inside
to outside radius of the cylinder.

The values of the roots presented can also be used as input data for finding the corresponding roots
for other values of the parameters.
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OPTIMIZATION OF HEATING "THIN'"" BODIES IN
THROUGH FURNACES
M. K. Kleiner UDC 669,041

This work is devoted to the determination of the thermal and temperature systems which minimize the
total expenditure on fuel, on losses associated with waste of metal and on expenditure which depends only
on the length of the furnace — capital and operational — in the case of heating of "thin" bodies in through
furnaces. In this article the mathematical model of the process of heating thin bodies developed in [1] is
used.

We will assume that the metal waste is proportional to the duration of heating, but its relationship
with the temperature is given in a general form by the function y(t); the specific expenditures depending only
on the length of the furnace are equal to C;x, that is, they are directly proportional to it; the specific
heat of the metal and the heat exchangecoefficient & do not depend on the temperature.

Minimization of the function of the tofal expenditures
J4

Tiw] = [ 16,0 (¢ () -+ Cow (1) + Cil dx M)
0

taking into account the differential equation of connection (the thermal balance of the metal {1]) is accom-
plished by using the principle of the Pontryagin maximum. Solution of the problem is obtained in the form

w* (1) = — KP + V—(KPI)Z + aplywy () + Cy, Cyuy = Cy/Cyy, @)

w(x) is the water number of gases entering the furnace in a unit of time per unit of its length; x is the dis-
tance; K,P is the coefficient of thermal losses and the lateral perimeter of the working area; p is the sur-
face of the heated metal arranged on a unit of length of the furnace; Cy are the losses associated with the
loss of 1 kg of metal; Cg is the cost of a unit of the water number of gases; C; is the integration constant,
determined from the condition t(Z) =t¢, 1 is the complete length of the furnace, t; is the given final temper-
ature of the metal. The optimal magnitudes are indicated by an asterisk.

Where Cy, =0 we find w*(x)— (2)that is,the quickest heating will be optimal. If C; is a function of /,
then (2) does not vary.

The optimal length of the furnace is determined from the relationship
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C; is the derived specific expenditure — capital and operational — in a unit of time per unit of length of the
furnace.

In the article expressions are given for the temperatures of gases and metals for the variation of w(x)
according to (2) as well as a method for calculating the furnace and dynamics of heating of metal in the ab-
sence of any limitations or with limitations in the supply of heat or in the temperature of the stonework,

In addition, analysis of the influence of the length of the furnace on the total losses at different values of
Cy is carried out, the dynamics of heating the metal is determined for a concrete example, and the influ-~
ences of the allowances made are discussed.
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Tterative calculation (by a method of consecutive approximations) enables the variation of o and of
other magnitudes during the heating process to be determined. Analysis shows that w*(x) increases during
heating owing to the increase of @ and y(t) with the temperature.
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COMPARISON OF DISCHARGES OF FREE-FLOWING
MATERIAL FROM PLANE AND CYLINDRICAL HOPPERS

V. E. Davidson, A. P. Tolstopyat, UDC 532.529.5
and N. P. Fedorin

For convenience in conducting experiments it is preferable to study the flow of free-flowing bodies in
plane hoppers, whereas the cylindrical hoppers are used more widely in industry. A problem therefore
arises concerning the mechanism of reduction of the discharge of a free-flowing material obtained in a plane
hopper through an aperture of rectangular shape to a discharge from a cylindrical hopper through a circu-
lar aperture. ’

Experiments were carried out using a plane hopper, with a view to establishing a corresponding
theory. Quartz sand was used as the free-flowing material.

In the work of F. E. Keneman a universal relationship between the discharge of a free-flowing mate~’
rial from a cylindrical hopper and the relative dimensions of the aperture was derived on the basis of the
similarity theory
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We compared similar (1) relationships (Fig. 1, curve, 1) obtained in a plane hopper.

The attempt to establish an agreement between the discharges through plane and cylindrical hoppers
in the case of equal-sized areas of discharge apertures or in the case of equal hydraulic diameters of the
latter leads to relationships which differ qualitatively from the curve 1.

The agreement established below is based on the concept of a dynamic arch which is formed above
the discharge apertures. In the cylindrical hopper the dynamic arch is axisymmetrical, and compressive
forces act upon the particles of the free-flowing material which pass through it in the horizontal plane. In
the dynamic arch which forms in the flow from the plane hopper through the aperture which traverses the
whole of the bottom of the hopper, the compressive forces are absent. If it were possible in the case of
the cylindrical hopper to eliminate the pressence of the above-mentioned compressive forces, then the flow
process would be represented as a flow between parallel plates through an aperture whose width is equal to
the diameter of the aperture of a cylindrical hopper. The discharges per unit of area of the aperture of
plane and cylindrical hoppers would be the same. Allowing this and introducing the parameters K*, which

is similar to the parameter K and which represents a

e 5 dimensionless discharge from a cylindrical hopper with-
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By forming the difference K*—K = AK () taking into ac-

9 / count (1), 2) and assuming b =D{* =6), we will obtain
A the unknown connection between the discharges from
0 40 80 120 160 . d the cylindrical and plane hoppers
Fig. 1. Relationships K ¢) and K*@©*): 1) G _a, AK 3)
relationship K (6); 2) relationship K¥*@*), Gpl 4 ( K )
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It is possible to divide the region 6 = 200, where the magnitudes K* and K are self-modelling in relation to
6, in which
G

— = 0.683).
GPI
NOTATION
aandb are the dimensions of the aperture;
Ym is the weight of 1 m? of the free-flowing material;
G is the weight discharge of free-flowing material from a cylindrical hopper;
Gpl is the weight discharge of free-flowing material from a plane hopper;
D is the diameter of the discharge aperture of the cylindrical hopper;
g is the acceleration of gravitational forces;:
A =b/a;
de ' is the equivalent diameter of the particles,
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