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E S T I M A T I N G  T H E  C O E F F I C I E N T  O F  T H E R M A L  

C O N D U C T I V I T Y  O F  O R D E R E D  T W O - P H A S E  S Y S T E M S  

S. V. S t e p a n o v  UDC 536.21 

Analysis  of the re la t ionships  obtained in [1] for  es t imat ing  the coeff icient  of t h e r m a l  conductivity of 
two-phase  s y s t e m s  shows that for  i so t ropic  sy s t ems  they co r respond  with the known evaluat ions 

p --1 [ ~  .At_ -~] ~,~<~#~(1)(l- p) + ~(2}p.. (1) 

Different  resu l t s  f rom these a re  obtained for  media which a r e  s ta t i s t i ca l ly  anisot ropic .  Hence the follow- 
ing re la t ionships  will be c o r r e c t  for  fully o rdered  s t ruc tu r e s :  
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I t  is possible  to show that the re la t ionships  (2) and (3) will give solutions which co r respond  with the 
solutions obtained by approx imate  methods of " l inear  i s o t h e r m s "  and of " l inear  t he rma l  flow." F rom the 
physical  point of view this is explained as  follows. In the method of " l inear  i s o t h e r m s "  the actual  t e m p e r -  
a ture  field in the s y s t e m  is replaced by  a field in which the i so the rms  r e p r e s e n t  the combinat ion of planes 
which a r e  perpendicular  to the macroscop ic  t e m p e r a t u r e  gradient .  Such a r ep lacemen t  is equivalent  to the 
introduction of a number  of infinitely thin superconduct ing planes into the sys t em,  which can only lead to 
an inc rease  of the t h e r m a l  conductivity.  
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Fig. 1. Evaluation of the coefficient  of 
t h e r m a l  conductivity of o rdered  two-phase  
s y s t e m s  (k(2)/k (1) = 0) f rom above and be -  
low: continuous lines - cubes in a cubic 
pat tern;  dash lines - sphe res  in a cubic 
pat tern;  do t -and-dash  line - D u l ' n e v -  
F r e y  model,  

In the method of " l inear  t h e r m a l  flow" the t he r ma l  
flow lines a re  replaced by para l le l  s t ra igh t  lines. This  
co r re sponds  with the introduction of a combination of tubes 
with hea t - imperv ious  walls  of infinitely smal l  th ickness  into 
the sys t ems ,  which can only reduce X. 

Figure  1 gives the resu l t s  of calculat ion of the t h e rma l  
conductivity coefficient  according  to formulas  (2) and (3) for  
the s t ruc tu res :  cubes in a cubic pat tern,  spheres  in a cubic 
pat tern,  a s t ruc tu re  with mutual ly penetrat ing phases  
(Dul 'nev-  F r e y  model [2, 3]). Compar i son  of these  with the 
solutions obtained by the methods of " l inear  i s o t h e r m s "  
and " l inear  t h e r m a l  flow" [2-6] shows complete  a g r e e m e n t  
of the resu l t s .  
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N O T A T I O N  

a r e  the coefficients  of t h e r m a l  conductivity of the 
f i r s t  and second phases ;  
is the volume concentra t ion of the second phase; 
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a re  the [ength and a r e a  of the foundation of a s t ra igh t  para l le lepiped,  se lec ted  as an e le -  
ment  (the para l ie lepiped  is or ienta ted  in the direct ion of the mac roscop ic  t e m p e r a t u r e  
gradient) ;  
is the length of the project ion of the second phase on the edge of the paral le lepiped;  
is the a r e a  of the project ion of the second phase on the foundation of the paral le iepiped;  
a r e  the length and a r e a  of the perpendicular  c ross2sec t ion  of the paral le lepiped,  com-  
ing into the second phase.  
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NONSTATIONARY TEMPERATURE DISTRIBUTION IN 

A HOLLOW CYLINDER 

A. I. Logvinenko and V. N. Serebryanskii UDC 536.21 

A relation is presented for calculating the nonstationary tempera ture  distribution in an infinite hol- 
low cylinder heated from the inside and cooled from the outside. To simplify engineering calculations we 
have obtained the values of the f i rs t  three roots of the charac te r i s t ic  equation for the following ranges of 
pa ramete rs :  

Bil=0.1-40; Bi~=0.1--5.0; M=0,4-0.9.  

Here Bi I charac te r i zes  the rate of heating the wall, and Bi 2 the rate of cooling; M is the rat io of the inside 
to outside radius of the cylinder.  

The values of the roots presented can also be used as input data for finding the corresponding roots 

for other values of the paramete rs .  
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O P T I M I Z A T I O N  OF H E A T I N G  

T H R O U G H  F U R N A C E S  

M. K. K l e i n e r  

" T H I N "  B O D I E S  IN 

UDC 669.041 

This work is devoted to the determination of the thermal  and tempera tu re  sys tems which minimize the 
total expenditure on fuel, on losses associa ted  with waste of metal and on expenditure which depends only 
on the length of the furnace - capital and operational - in the case of heating of "thin" bodies in through 
furnaces.  In this ar t ic le  the mathematical  model of the process  of heating thin bodies developed in [1] is 
used. 

We will assume that the metal  waste is proportional to the duration of heating, but its relationship 
with the tempera ture  is given in a general  form by the function y(t); the specific expenditures depending only 
on the length of the furnace are  equal to C/x, that is, they are  d i rec t ly  proportional to it; the specific 
heat of the metal and the heat exchange coefficient c~ do not depend on the tempera ture .  

Minimization of the function of the total expenditures 
l 

I [@ = .[ ICvy (l (x)) + Cwrz (x) + Cd dx (1) 
0 

taking into account the differential  equation of connection (the thermal  balance of the metal  [1]) is accom-  
plished by using the principle of the Pontryagin maximum. Solution of the problem is obtained in the form 

w* (x)  = - -  K P  -+- V~( -KP)  2 -~- aPCywy (0 + C,, Cg w = C q/Cw, ( 2 )  

w(x) is the water  number of gases entering the furnace in a unit of time per unit of its length; x is the dis-  
tance; K,P is the coefficient of thermal  losses and the lateral  per imete r  of the working area;  p is the sur -  
face of the heated metal a r ranged  on a unit of length of the furnace; Cy are  the losses associa ted with the 
loss of 1 kg of metal;  C w is the cost  of a unit of the water  number of gases;  C 1 is the integration constant, 
determined from the condition t(l) =tf, 1 is the complete length of the furnace, tf is the given final t emper -  
ature of the metal .  The optimal magnitudes are  indicated by an as ter i sk .  

Where C w =0 we findw*(x) ~oo (2)thatis, the quickest heating will be optimal. If C l is a function of l, 
then (2) does not vary.  

The optimal length of the furnace is determined from the relationship 

- t cr t~ 1 - tf } T  (~p +/(P ) Kp (3) 
~*(,*)- /(P ~ + { ( m  , f - t c r  ~ 

~ ~ - -  

tf--tcr (ap+KP t~ Cv V C, ]/'/2 
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C/ is the derived specific expenditure - capital and operational - in a unit of time per unit of length of the 
furnace.  

In the ar t ic le  express ions  are  given for the tempera tures  of gases and metals for the variation of w(x) 
according to (2) as well as a method for calculating the furnace and dynamics of heating of metal  in the ab- 
sence of any limitations or  with limitations in the supply of heat or in the tempera ture  of the stonework. 
In addition, analysis  of the influence of the length of the furnace on the total losses at different values of 
C 1 is ca r r ied  out, the dynamics of heating the metal is determined for a concrete example, and the influ- 
ences of the allowances made a re  discussed.  
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I terat ive calculation (by a method of consecutive approximations) enables the variat ion of a and of 
other  magnitudes during the heating process  to be determined.  Analysis shows that w*(x) inc reases  during 
heating owing to the increase  of a and y(t) with the t empera tu re .  
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C O M P A R I S O N  O F  D I S C H A R G E S  O F  F R E E - F L O W I N G  

M A T E R I A L  F R O M  P L A N E  AND C Y L I N D R I C A L  H O P P E R S  

V. E .  D a v i d s o n ,  A.  P .  T o l s t o p y a t ,  
a n d  N. P .  F e d o r i n  

UDC 532.529.5 

For  convenience in conducting experiments  it is preferable to study the flow of free-flowing bodies in 
plane hoppers,  whereas the cyl indrical  hoppers are used more widely in industry.  A problem therefore  
a r i ses  concerning the mechanism of reduction of the discharge of a free-flowing mater ia l  obtained in a plane 
hopper through an aper ture  of rec tangular  shape to a discharge from a cyl indrical  hopper through a c i rcu-  
lar aper ture .  

Experiments  were ca r r i ed  out using a plane hopper, with a view to establishing a corresponding 
theory.  Quartz sand was used as the free-flowing material .  

In the work of F. E. Keneman a universal  relationship between the discharge of a free-flowing ma te+  
rial  from a cyl indr ical  hopper and the relative dimensions of the aper ture  was derived on the basis of the 
s imi la r i ty  theory  

O D 
K (6) = ; ~ - 

vp~-~?mD2,5 d e (1) 

We compared  s imi la r  (1) relat ionships (Fig. 1, curve,  1) obtained in a plane hopper. 

The at tempt to establish an agreement  between the d ischarges  through plane and cyl indrical  hoppers 
in the case of equal-s ized a reas  of discharge aper tures  or in the case of equal hydraulic d iameters  of the 
latter leads to relat ionships which differ qualitatively from the curve 1. 

The agreement  established below is based on the concept of a dynamic arch which is formed above 
the discharge aper tures .  In the cyl indr ical  hopper the dynamic arch is ax isymmetr ica l ,  and compress ive  
forces  act  upon the part icles  of the free-f lowing mater ia l  which pass through it in the horizontal  plane. In 
the dynamic a rch  which forms in the flow from the plane hopper through the aper ture  which t r ave r se s  the 
whole of the bottom of the hopper, the compress ive  forces are  absent. If it were possible in the case of 
the cyl indr ical  hopper to eliminate the pressence  of the above-ment ionedcompress ive  forces,  then the flow 
process  would be represented  as a flow between parallel  p la tes th rough  an aper ture  whose width is equal to 
the d iamete r  of the aper ture  of a cyl indrical  hopper. The discharges  per unit of area  of the aper ture  of 
plane and cyl indr ical  hoppers would be the same.  Allowing this and introducing the pa ramete r s  K*, which 
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Fig. 1. Relationships K (5) and K*(6*): 1) 
relationship K (5); 2) relationship K*(6*}. 
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is s imi la r  to the pa ramete r  K and which represents  a 
dimensionless  discharge from a cyl indrical  hopper with- 
out taking into account the compress ive  forces,  we will 
obtain 

G* ~G:pl 
K . . . .  (2) V~-~mb2,5 q/r~-~mb2,5 

By forming the difference K * - K  = AK (5) Caking into ac-  
count (1), (2) and assuming b =D(5* =5), we will obtain 
the unknown connection between the discharges  from 
the cylindrical  and plane hoppers 

G ~ Z , [ 1 A K ~  (3) 
Opl 4 \ K )  
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It  is possible  to divide the region 6 -> 200, where  the magnitudes K* and K a re  se l f -mode l l ing  in relat ion to 
5, in which 

G 
- -  ~ 0.683~. 
Gpl 

N O T A T I O N  

a and b 

"Ym 
G 
Gpl 
D 
g 

X =b/a; 
d e 

a r e  the dimensions  of the ape r tu re ;  
is the weight of 1 m 3 of the f ree-f lowing mate r ia l ;  
is the weight d ischarge  of f ree-f lowing ma te r i a l  f rom a cyl indr ical  hopper;  
is the weight d ischarge  of f ree-f lowing m a t e r i a l  f rom a plane hopper;  
is the d i a m e t e r  of the d ischarge  ape r tu re  of the cyl indr ical  hopper;  
is the acce le ra t ion  of gravi ta t ional  f o r c e s ;  

is the equivalent  d i am e t e r  of  the par t ic les .  
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